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Abstract

This paper presents an opensource1design of a possible implementation for a low-cost, modular, BFloat16 (BF16)
FPU micro-architecture which targets RISC-V based embedded cores. BF16 is recommended in deep learning
since it covers the same value range as the 32-bit floating-point format (FP32), ensuring models train and run
effectively without extra parameter adjustments and allows simple conversions to and from Fp32. We use the
CV32E40P core with our BF16 module that contains custom instructions for multiply-accumulate, conversion,
and min-max operations. Our design relaxes certain features of the IEEE Floating-Point Standard to realize
a cost-effective hardware implementation. Particularly, it applies zero-flushing to subnormal operands, uses
just one rounding mode i.e. RNE (Round to nearest, tie to even), does not propagate input Nan’s, and applies
zero-skipping for sparse networks. Using these optimizations, we have achieved almost 35% reduction in silicon
area compared to an IEEE compliant FP32 implementation with minimal impact on computational accuracy.

Introduction

BFLOAT16 is a 16-bit format optimized for machine
learning, with a wider dynamic range than FP16, mak-
ing it better suited for certain neural network com-
putations. It aligns with the IEEE single-precision
format by maintaining the same exponent width while
reducing the fraction bits from 23 to 7. BF16’s fewer
mantissa bits mean its multipliers are approximately
half the size of those for FP16 and eight times smaller
than FP32 multiplier. Due to smaller data sizes, it
has optimized on-chip memory usage and improved
memory bandwidth. This results in reduced compu-
tational resources, faster processing, lower power use,
and compatibility with 32-bit floating-point environ-
ments. Neural networks are more sensitive to the
size of the exponent than the mantissa and can main-
tain accuracy with lower-precision values like FP16
or BF16. The same exponent size as FP32 ensures
models train and run effectively without extra costly
parameter adjustments and network redesign.[1]

The resilience of Neural Networks to numerical inac-
curacies has led to varied adherence to the IEEE-754
standards. This results in different implementations
across various platforms like Google, ARM, Intel, and
RISC-V for BF16 arithmetic. RISC-V extends BF16
vector support to include subnormal numbers and
all IEEE-defined rounding modes, accommodating a
broad spectrum of computational demands. Mean-
while, ARM’s dot product and multiply accumulate
instructions enhance matrix multiplication efficiency
with numeric simplifications such as a single round-
1 https://github.com/10x-Engineers/cv32e40p

ing mode and flushing subnormals to zero. Intel’s
deep learning boost leverages BF16 without denormal
support and exception handling. Google’s implemen-
tation of BF16 in Cloud TPUs focuses on hardware
efficiency, flushing denormals and using one rounding
mode only. This diversity in BF16 implementation
reflects the balance between efficiency and precision
needed in high-performance computing.

Methodology

This paper proposes custom Bfloat16 instructions for a
simplified implementation of the IEEE-Floating point
standard, suitable for low-precision tolerant applica-
tions like Neural Networks. This design implemen-
tation is currently integrated with CV32E40P core,
previously known as RI5CY. It is a high-performance,
low-power 32-bit RISC-V core developed as part of
the open-source CORE-V family of processors, aimed
specifically at embedded system applications. This
integration introduces custom instructions for multiply-
accumulate (FMACC) operations, conversion, and
minmax functions, with the FMACC module support-
ing addition, subtraction, and both fused-multiply-add
and subtract operations.

The simplifications for the proposed relaxed imple-
mentation are as follows:

• Subnormal Inputs are flushed to zero
• Only one rounding mode i.e. RNE (Round to

nearest, tie to even) is used
• Only one type of Nan is ever returned i.e. “default

Nan” and zero-values are skipped
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I. Subnormal Flush-to-zero
BF16’s 8-bit exponent offers sufficient dynamic range
for neural network computations even without sub-
normals, and this simplification does not impact NN
operation [2]. In contrast, FP16 with only 5 expo-
nent bits requires scaling operations to avoid overflow
and error accumulation. Therefore, this simplifies the
costly FPU logic needed to handle subnormals in multi-
pliers and adders. This simplification saves area of our
BFloat16 design by 21-22% as compared to an IEEE
compliant implementation that handles subnormals.

II. Single Rounding Mode (RNE)
The IEEE-754 standard includes multiple rounding
modes, but we limit ourselves to a single one, i.e.,
round-nearest even. It is preferred in deep learning
for its balanced handling of ties and error reduction
in neural network computations. This approach mini-
mizes rounding bias, improving accuracy and fairness,
and shrinks our implementation’s area by 13-14% as
compared to full IEEE compliant implementation.

III. Propagating Nans and Zero-skipping
We achieved marginal reductions in area by limiting
NaN propagation to a single default value. Further-
more, acknowledging that a substantial portion of
operations within low-precision networks involves zero
values [3], we implement zero-skipping to bypass com-
putations on these values leading to an increase in
speed that becomes more pronounced in deeper net-
work layers, which tend to exhibit increased sparsity.

Experimental Evaluation

The BF16 design implementation has been synthe-
sized at 1GHz using TSMC 65nm GP Standard Cell
Libraries with the Genus Synthesis tool under nominal
conditions (1V, 25°C) consuming 4.5W total power
and at 500MHz under worst-case conditions (0.9V,
125°C) consuming 1.8mW. The total area of the BF16
optimized FPU is 2.38kGE, with the FMACC occu-
pying 2.14kGE. The simplifications resulted in up to
35% area savings relative to a fully IEEE compliant
implementation.

Polybench Benchmark To evaluate the pro-
posed BF16 implementation, we utilized the Poly-
Bench benchmark suite, a collection of floating-point-
intensive programs. This analysis focused on mea-
suring the percentage mean relative error of BF16
compared to FP32 which served as the reference stan-
dard as can be seen in Figure 1. Each benchmark’s
FPU output was compared to an IEEE compliant
FP32 design.

We observe that the mean relative error using BF16
compared to FP32 is low, mostly below 0.5% except
’cholesky’ application with a higher error of 2.7% due

Figure 1: Polybench mean relative error comparison of
our BF16 module against fully compliant IEEE standard
FP32 as reference.

Table 1: NN models accuracy with different FP formats.

Training/Inference Resnet Inception

FP32(T)/BF16(I) 0.7496 0.7754
BF16(T)/BF16(I) 0.7376 0.7243
FP32(T)/FP32(I) 0.7495 0.7761

to it’s varying magnitudes causing accuracy loss with
reduced FP precision.

Neural Network Models Utilizing a Bfloat16 soft-
ware model with RNE rounding and flush-to-zero for
subnormals, we ran ResNet and Inception on CIFAR-
10. The comparison in Table 1 of NN model accuracies
across training and inference precisions (FP32/BF16
and BF16/BF16) against traditional FP32/FP32 pre-
cision demonstrates negligible impact on performance,
affirming neural networks’ resilience to reduced preci-
sion computing, rounding mode, and subnormal flush-
ing.

Conclusion The paper proposes a power and area
efficient BF16 implementation using single rounding
mode, subnormal flushing, and other optimizations.
Our analysis shows that these simplifications preserve
accuracy across Polybench applications and neural
network (NN) models. This demonstrates the mod-
ule’s capability to enhance embedded NN applications
efficiently without significant performance trade-offs.
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